Engineers and scientists working with computational fluid dynamic (CFD), other simulation and test data need to understand critical issues facing industry today. These in-depth reports on specific topics define the problems and offer solutions. Our goal is to inform you about particular issues and methodologies so that you can make the best decision possible.

Take a shortcut to these Topics: HOE | SZL | Parametric CFD | Plotting

Higher Order Elements (HOE)

Optimized Implementation of Recursive Sub-Division Technique for Higher-Order Finite-Element Isosurface and Streamline Visualization

Commercial visual analysis codes are not yet providing full support for higher-order solutions. The isosurface algorithm described in this paper is the first step toward improving higher-order element visualization in the commercial visualization code Tecplot 360. Get the PDF »

Recursive Sub-Division Technique for Higher-Order Pyramid and Prism Isosurface Visualization

This paper discusses a technique for visualizing isosurfaces in higher-order element solutions with reduced memory usage. The technique recursively subdivides higher-order elements into smaller linear sub-elements where the isosurface can be extracted using standard marching-tets or marching-cubes techniques. Get the PDF »

Recursive Sub-Division Technique for Higher-Order-Element Isosurface Visualization

Higher-Order finite-element CFD methods have the potential to reduce the computational cost to achieve a desired solution error. This paper discusses a technique for visualizing isosurfaces in higher-order element solutions with reduced memory usage. Get the PDF »

Subzone Load-on-Demand (SZL)

Improved Performance of Large Data Visualization Using Subzone Load-On-Demand

The size and number of datasets analyzed by post-processing and visualization tools is growing with Moore’s law. Conversely, the disk-read data transfer rate is only doubling every 36 months and is destined to be the bottleneck for traditional post-processing architectures. This paper discusses a method that eliminates this bottleneck. Get the PDF »

Compression of Finite-Element Node Maps with Subzone Load-On-Demand

The second SZL white paper explains the sub-division of the data set into subzones with 256 cells or nodes allows the node map of finite-element data to be compressed by more than a factor of two. The compressed node maps allow random access for each cell. The resulting file is 37% to 55% smaller than the original data sets and loading is faster. Get the PDF »

In Situ Visualization of 10-Billion Cell Transient Data via Subzone Writing

In situ visualization of unsteady CFD simulations is supported by Subzone Load-on-Demand (SZL). Performance is analyzed using four unsteady data sets: an unsteady multi-block structured CFD simulation of a wind turbine, an unsteady unstructured-grid hurricane simulation, and synthetic structured and unstructured data. Get the PDF »

Subzone-Based Client-Server Technique for I/O Efficient Analysis and Visualization of Large Remote Data sets

The SZL technique discussed in this paper differs from traditional client-server architectures. This paper discusses the technique used, the speedups in transfer time and the substantial memory reduction compared with traditional client-server techniques. Get the PDF »

Subzone-Based In Situ Technique for I/O Efficient Analysis and Exploratory Visualization

The subzone-based in situ technique is a compromise between writing the full three-dimensional dataset and traditional in situ visualization techniques. This white paper discusses the technique and its advantages. Get the PDF »

Visualizing a Trillion-Cell Simulated CFD Solution on an Engineering Workstation

In this paper, the isosurface for a simulated 1 trillion-cell CFD dataset was visualized using the SZL technology. With traditional visualization technology, this would require a super-computer, but with SZL it was possible on an engineering workstation with 128GB of memory. Get the PDF »

Parametric CFD Analysis

Challenges of Analyzing Parametric CFD Results

CFD is playing an increasingly larger role in simulation-based parametric analysis. This paper discusses the three roles that computational fluid dynamics (CFD) is playing: 1) Prediction and optimization, 2) Sensitivity analysis, and 3) Probabilistic analysis. Get the PDF »

Parametric Design-Space Exploration

The increase in number of simulation cases used in engineering and scientific analysis has revealed a gap in current post-processing analysis capabilities. This white paper explores what is needed to fill that gap. Get the PDF »

Role of Parametric CFD Analysis in Engineering Design

The application of parametric CFD analysis to engineering design is broken down into these five stages: 1) Problem definition, 2) Dimensional reduction, 3)Experimental design, 4) Management of CFD simulations, and 5) Metadata analysis. This white paper discusses each stage. Get the PDF »

Numerical Analysis and Plotting

Numerical Studies of Wind Turbine Acoustics

Investigating various aspects of wind power generation involves the numerical simulation of the flow around wind turbines and the acoustic field associated with the unsteady fluid behavior. This paper discusses the analysis methods and results obtained by Innovative Technology Applications Company, LLC (ITAC). Get the PDF »

Presenting a Polished Image: How to Effectively Communicate Results

You need to share the results of your work with key players both inside and outside your organization. This paper discusses output formats, color and layout to help you present your results more effectively in print, online and on screen. Get the PDF »

Streamlines, Particle Paths and Streaklines

Streamlines, particle paths and streaklines provide detailed information about the vector direction and magnitude in localized regions – without all the clutter of many other vector-field visualization methods. This white paper discusses their differences, and how and when to use them. Get the PDF »

Translation Between Aerodynamic Coordinate Systems

The visualization and analysis of data from many different sources – CFD, other simulation and test data – is complicated by the diversity of formats, units and coordinate systems. This white paper outlines the basic steps for analyzing this kind of heterogeneous data. Get the PDF »